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ABSTRACT

The widespread use of electromagnetic space utilization technology across various fields—
including maritime, terrestrial, aeronautical, orbital, electrical, and telecommunications—has 
generated vast amounts of electromagnetic environment data. To manage challenges, such as the 
storage of large raw datasets, data discrepancies, isolated data across multiple pathways, and low 
data value density, a big data-based electromagnetic environment data warehouse is proposed. This 
warehouse standardizes data from diverse sources, integrates and reconstructs it according to business 
themes, and uses a mix of relational and non-relational databases for storage. It meets the needs for 
high data reliability, fast access, and massive storage capacity, offering a solution to data overload 
while supporting data mining and knowledge discovery in the electromagnetic field.
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INTRODUCTION

With the continuous improvement in the informatization of electromagnetic environment 
applications and the long-term operation of related businesses, various departments have accumulated 
vast amounts of electromagnetic environment data (Chen & Zhao, 2020). This data has played an 
important role in radio management, spectrum control, electronic warfare, and other areas (Cheng 
et al., 2019; Ding, 2015; Ha & Jia, 2015). However, there are also many challenges in terms of 
comprehensive storage and application of the data (Group, 2017):

1.  Difficulty in storing massive raw data: Electromagnetic environment sensing devices have 
powerful data collection capabilities, with fast data output frequencies and diverse data types. 
Over long periods, these devices accumulate large amounts of data, and existing information 
systems are unable to meet the storage demands.

2.  Large differences in data elements: Currently, China has been building electromagnetic 
environment sensing devices for different business applications. Since these devices are produced 
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by different manufacturers and follow different data transmission protocols, the resulting 
electromagnetic environment data varies in source and structure.

3.  Data silos: The existing electromagnetic environment data is non-integrated, with massive amounts 
of data stored independently in each business system. This leads to inefficiencies in data sharing 
and interoperability, and there is a lack of integrated data applications.

4.  Low data value density: Short-term data is insufficient to reflect the state of the electromagnetic 
environment, and effective analysis can only be achieved using long-term, large-scale data. 
Therefore, developing a standardized solution with fast storage and highly efficient processing 
for electromagnetic environment data has become an urgent need to enhance the value of these 
data applications.

As a subject-oriented, integrated, stable, and time-variant collection of data used to support 
management decisions, a data warehouse enables the integration of multiple heterogeneous data 
sources. It can reorganize data according to themes to meet online analytical processing (OLAP) 
needs, supporting data mining and management decision-making (He et al., 2022). A data warehouse 
based on Oracle and its related components was constructed to address the storage and processing 
requirements of radio data, as detailed in relevant studies (Hu, 2017). This data warehouse design 
was well-suited for scenarios characterized by low data volume, structured data storage, and stable 
business needs. A solution based on Oracle database and data warehouse technologies had been 
proposed, specifically tailored for the efficient storage and processing of radio monitoring data 
(Imran et al., 2021). This solution integrates functionalities, such as clustering analysis, unknown 
signal prediction, and pattern mining, utilizing intelligent data mining techniques to improve the 
comprehensive coverage of signals. Furthermore, by incorporating OLAP analysis within a Browser/
Server model, the system enables more intuitive and visual data presentation, offering robust support 
for decision-making. However, with the increasing variety and volume of monitoring data, relying 
on relational databases, such as Oracle, can result in excessive database load. Additionally, the table 
structure design may become suboptimal, posing challenges in effectively supporting diverse data 
retrieval and processing demands.

Big data storage technologies excel at managing data with high timeliness, fast storage speeds, 
large capacities, and varying quality. One study designed a distributed storage system architecture 
for massive radio monitoring data, leveraging the Hadoop cloud computing platform and the HBase 
distributed database to address the storage, retrieval, and analysis requirements of radio regulatory 
agencies (Inmon, 2006). Another approach employed a combination of Redis and MongoDB, two 
non-relational databases, to achieve distributed storage for large-scale spectrum data (Lu, 2019). An 
efficient data storage solution leveraging the distributed characteristics of HBase has been proposed, 
enabling dynamic design of storage table structures based on query requirements and offering the 
flexibility to meet diverse storage needs (Pan et al., 2023). Another approach combines MongoDB's 
replica sets and sharding technology to create a distributed storage architecture that efficiently stores 
spectrum data across multiple storage server nodes (Tian et al., 2017). Additionally, an integration 
of HBase with Elasticsearch was introduced to address the challenges of storing and querying large 
volumes of electromagnetic environment data. This solution provided a robust and efficient framework 
for managing complex data requirements (R. Wang, 2023). Moreover, the application of cognitive radio 
technology and spectrum sensing algorithms, such as GSRED, was proposed to enhance the spectrum 
management process in smart grids, offering significant improvements in real-time data processing 
and decision-making in dynamic environments (Y. Wang, 2020). A comprehensive framework for an 
electromagnetic environment data warehouse was proposed, addressing the challenge of managing 
large-scale electromagnetic data through a multidimensional model (Q. Yang et al., 2020). One study 
explored the use of open-source NoSQL columnar databases to build data warehouse solutions in such 
environments, further supporting the need for flexible, scalable storage technologies (X. Yang, 2023).
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However, these storage architectures are primarily focused on storing business data and do 
not establish data themes based on specific business needs, limiting their suitability for analytical 
data processing and decision-making support. To address this challenge, a fast storage solution 
based on a rotation model was proposed, aimed at significantly enhancing the storage throughput 
of electromagnetic big data streams. This solution effectively alleviated the pressure on storage 
systems caused by high-speed data flows, providing robust support for the real-time processing of 
electromagnetic environment data (W. Zhang, 2020). In addition, a Hadoop-based CTK clustering 
algorithm was developed for the analysis of radio monitoring spectrum data (Y. T. Zhang, 2024). 
This algorithm efficiently processed massive datasets within a distributed environment, addressing 
the lack of automated analysis in radio monitoring and offering new insights for accurate spectrum 
data analysis and real-time decision-making, especially in big data environments.

This research aims to address the challenge of managing and analyzing large-scale electromagnetic 
environment data by proposing a comprehensive framework for an electromagnetic environment 
data warehouse. The significance of this study lies in its ability to bridge the gap between traditional 
data management techniques and the growing demands of big data in the electromagnetic domain. 
Specifically, this paper first models the themes of the electromagnetic environment data warehouse, 
designing the subject areas and dimensions of the electromagnetic environment. On this foundation, 
a multidimensional model for electromagnetic environment big data is presented (see data model of 
the electromagnetic environment section). Then, a big data-based architecture for the electromagnetic 
environment data warehouse is proposed, utilizing big data storage and data warehouse technologies 
to store electromagnetic environment data. The architecture introduces data sources, and the 
processes of extraction, cleansing, and standardization. The storage structure of the electromagnetic 
environment data warehouse is designed using both relational and non-relational databases (see data 
warehouse architecture section). Finally, a multidimensional analysis of electromagnetic signal data 
is conducted to demonstrate the effectiveness of the electromagnetic environment data warehouse 
(see multidimensional analysis of electromagnetic environmental data section).

DATA MODEL OF THE ELECTROMAGNETIC ENVIRONMENT

There are various data warehouse modeling methods, such as the ER (Entity-Relationship) 
model, dimensional model, data vault model, anchor model, etc., among which the dimensional model 
is a commonly used modeling method (Zheng, 2017). Dimensional modeling involves extensive 
preprocessing for each dimension, which can greatly enhance the processing capabilities of the data 
warehouse, providing a significant performance advantage. Additionally, dimensional modeling is 
very intuitive, closely centered around the business model, and can directly reflect business problems 
without requiring particularly abstract processes to complete the modeling. Therefore, the dimensional 
modeling method is used here for modeling the electromagnetic environment data warehouse.

Theme Design
Based on the comprehensive business requirements of the electromagnetic environment, six 

major themes have been designed for the electromagnetic environment data warehouse: spectrum 
identity, spectrum resources, signal patterns, radio frequency (RF) trajectory, radiation variation, and 
anomalous impact. Each major theme includes several sub-themes to facilitate related data analysis, 
as shown in Figure 1.
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Figure 1. Thematic design of the electromagnetic environment data warehouse

Note. RF = radio frequency.

Spectrum Identity Theme
The spectrum identity theme aims to aggregate and integrate environmental monitoring data 

with radiation source direction-finding data. Comprehensive analysis of electromagnetic signal 
characteristics within a specific frequency band functionality includes statistical reporting and 
generation of task-specific frequency occupancy reports, comparative and trend analysis of signal 
frequency occupancy, and signal mapping to present characteristic information of specific devices 
or signals, including field strength variation and coverage. Additionally, the spectrum identity theme 
encompasses baseline analysis of signal detection and field strength variation for designated devices 
within specific timeframes and frequency bands, offering a clear representation of signal occurrence 
frequency and field strength fluctuation trends.

Spectrum Sources Theme
The spectrum resource theme aims to comprehensively describe and analyze the spectrum 

resources and related information within the electromagnetic environment. This theme encompasses 
a multidimensional analysis of data on frequency usage by stations, spectrum parameters of 
frequency-using equipment, frequency resource data, and spectrum sensing data. It enables detailed 
statistical analysis of signal categories, including information on signal types, occurrence frequency, 
and relationships with equipment, as well as signal frequency and direction. Additionally, the spectrum 
resource theme focuses on the statistical analysis of major signals within specific timeframes and 
frequency bands, recording basic signal information, occurrence frequency, and their relationships 
with equipment.

Signal Pattern Theme
The signal pattern theme aims to reveal the temporal and spatial distribution characteristics and 

variation patterns of electromagnetic signals through multidimensional analysis in the time domain, 
frequency domain, and spatial domain. This theme focuses on conducting correlation analysis and 
mining of signal data from the perspectives of time, frequency, and space, assisting users in gaining 
a comprehensive understanding of signal behavior patterns.
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In terms of time domain statistics, this theme integrates data from the same frequency band across 
different tasks and performs statistical analysis on signal occupancy, field strength variation, and other 
metrics at time granularities, such as hours, days, and months, generating time domain reports that 
reveal the variation patterns of signals within specific time periods. Frequency domain statistics focus 
on aggregating multitask data within the same frequency band, analyzing changes in signal frequency 
distribution, field strength, and occupancy, and generating signal occupancy analysis reports. Spatial 
analysis can be further expanded by combining data from different geographical locations to illustrate 
the coverage and intensity variation trends of signals in different areas.

RF Trajectory Theme
The RF trajectory theme aims to reveal the spatial movement trajectory, intensity change, 

and spectrum utilization of signals through a comprehensive analysis of RF signals received by 
electromagnetic environment sensing devices. This theme focuses on describing the dynamic changes 
of signals in the spatial and temporal dimensions, which provides important support for target 
behavior and attribute adjudication. In the RF trajectory theme, core data, such as signal generation 
time, movement path, frequency characteristics, and influence range, are integrated and analyzed. 
Through the intelligent frequency selection function, the results of the band scanning task can be 
utilized to identify the free frequency bands within a specific time range and the occupation of signals, 
providing a reliable basis for spectrum management and resource allocation. Signal strength analysis 
generates a detailed signal strength report by processing the monitoring data, showing the change of 
signal strength in a specific frequency band and time. Signal strength comparison supports accurate 
comparison of field strength changes of different signals through cross-task and cross-device data 
summarization.

Radiation Variation Theme
The radiation variation theme is dedicated to an in-depth analysis of the dynamic changes in 

equipment radiation as revealed by long-term monitoring results. It uncovers the behavioral patterns 
of signals and the utilization of spectrum resources by evaluating signal activity across different time 
periods, frequency occupancy, and spectrum usage. This theme encompasses several key areas of 
analysis, including signal activity analysis, which focuses on signal occupancy during both daytime 
and nighttime to understand performance variations at different times; frequency occupancy statistics, 
which identify and analyze usage patterns of frequency points, particularly the occupancy levels of 
frequently transmitted signals; spectrum report generation, which provides detailed information on 
the usage of specific frequency bands within designated time frames; and frequency band occupancy 
statistics, which illustrate the overall occupancy of frequency bands and their variations over different 
time granularities. These analyses facilitate the effective management and optimization of spectrum 
resources, ensuring their efficient utilization while also enabling the assessment of trends in changes 
to the electromagnetic environment.

Anomalous Impact Theme
The anomaly impact theme focuses on analyzing and assessing signals that may have a detrimental 

impact by integrating long-term monitoring results of anomalous signals and signal characteristic 
data to identify and predict potential threats. This theme encompasses a comprehensive analysis of 
anomalous electromagnetic environment data, anomalous signal data, and threat alert analysis results. 
The primary focus is on the prediction of anomalous signals, which involves analyzing data from a past 
period to forecast the likelihood of unknown, illegal, or illicit signals emerging in the future, along with 
labeling and alerting these signals. This analysis incorporates the historical field strength and occurrence 
frequency of signals, as well as signal mapping, to accurately predict future anomalous signals. Another 
critical aspect is the analysis of signal leakage, which involves comparing electromagnetic environment 
monitoring data of the same specifications collected at different times. By selecting reference and 
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comparison subjects and merging and comparing data within specified timeframes and frequency 
bands, this analysis helps identify missing signals between the reference and comparison subjects, 
providing a clear comparison of signals and revealing potential signal leakage issues.

Dimensional Design
The design of data analysis encompasses five dimensions: time, device, task, frequency, and 

signal. The time dimension primarily includes seconds, minutes, hours, days, months, and years. 
The device dimension mainly includes name, model, latitude and longitude, coverage area, and the 
upper and lower frequency limits monitored by the device. The task dimension mainly includes 
associated devices, task start time, task end time, and task parameters. The signal dimension primarily 
encompasses various aspects, including signal name, signal frequency, signal bandwidth, signal 
field strength, modulation method, signal type, site unit, licensed station, and assigned station. By 
synthesizing these dimensions, one can establish granularities for time, geographical range, frequency, 
and type. Smaller data granularity leads to a more detailed description of the scenario (Hu, 2017). 
Time granularity ranges from seconds to years; geographical range granularity varies from province, 
city, district to specific location; frequency granularity includes frequency points, channels, and 
frequency bands. The type granularity is divided into device type and signal type, with both types 
encompassing categories, such as major categories, subcategories, and detailed classifications. Figure 
2a illustrates the granularity of the device dimension, while Figure 2b presents the granularity of 
the signal dimension. The granularity of the device dimension may include geographical range and 
device type, while the granularity of the signal dimension includes time granularity, geographical 
range granularity, frequency granularity, and type granularity.

Figure 2. Design of particle granularity

Multidimensional Data Model of the Theme
Definition 1

Multidimensional modeling of big data for the electromagnetic environment: Define a seven-tuple 
(T, G, F, Y, H, M, Δ) , in which:

1.   T  represents a collection of times;
2.   G  denotes the set of geographic locations;
3.   F  denotes the set of frequencies;
4.   Y  denotes the set of signal types;
5.    H =  {    H  T  ,  H  E  ,  H  M  ,  H  F  ,  H  Y   }    , and   H  T  ,  H  E  ,  H  M  ,  H  F  ,  H  Y    represent the conceptual hierarchy of time, 

device, task, frequency and signal type, respectively;
6.   M  denotes the set of metrics;
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7.    Δ =  {    δ  1  ,  δ  2  , ...,  δ  m   }     is a collection of functions such that   δ  i   : T × E × M × F × Y → M , indicating 
that, given a specific time, device, task, frequency, and signal type, a unique metric value can be 
obtained.

Definition 2
Conceptual hierarchy: Let the set of hierarchies   L =  {    L  1  ,  L  2  , ...,  L  n   }    , such that there exists a 

mapping function   f  i   :  L  i   →  L  i+1   , such that, for   l  i   ∈ L , there exists a   l  i+1   ∈  L  i+1    that satisfies   l  i+1   =  f  i  ( 
l  i  ) , and then the concept hierarchy can be expressed as  (L, F) , and   F =  {    f  1  ,  f  2  , ...,  f  n−1   }    .

According to definition 2, in definition 1,   H  T  ,  H  G  ,  H  F  ,  H  Y    can be expressed, respectively, as:

   H  T   = ( L  T  ,  F  T   )  L  T   =  {  year, quarter, month, day }  (math . )  F  T   =  {    f  day→month  ,  f  month→quarter  ,  f  quarter→year   }  ,  

   H  G   = ( L  G  ,  F  G   )  L  G   =  {  province,city,district,location }  (math . )  F  G   
 =  {    f  location→district  ,  f  disctict→city  ,  f  city→provinve   }  ,  

   H  F   = ( L  F  ,  F  F   )  L  F   =  {  band, frequency }  (math . )  F  G   =  {    f  frequence→band   }  ,  

   H  Y   =  ( L  Y  ,  F  Y  )   L  Y   =  {  category, subcategory, type }  (math . )  F  Y   =  {    f  type→subcategory  ,  f  subcategory→category   }  .  

Definition 3
Topic: Given a six-tuple  (T, G, F, Y, H, M, Δ) , the theme  S = (Ψ, Ω) , where   Ψ ⊆  {  T, G, F, Y }     and  

Ω ⊆ M ,  Ψ  is called the dimensions of the theme, and  Ω  is the metric of the theme.

Definition 4
Spectrum identity theme:   Ψ =  {  T, E, M, Y }    .   Ω =  {  RM, RD, RSC }    , where  RM, RD, RSC  denote 

the indicators of radiation signal monitoring, radiation signal lateralization, and calculation of radiation 
source identity data, respectively, which mainly include occupancy, maximum/small field strength, 
number of signal occurrences, signal coverage, field strength trend, and signal change trend, and so on.

Definition 5
Spectrum resource theme:   Ψ =  {  T, E, M, F }    .   Ω =  {  FS, DSP, FR, SS }    , where  FS, DSP, FR, SS  

denote the metrics calculated with frequency station data, frequency equipment spectrum parameter 
data, frequency resource data, spectrum perception data, etc., respectively, including the number of 
signal categories, the number of signal occurrences, the signal frequency, the azimuthal angle, the 
historical field strength, the signal wavelength, the frequency of large signals, the number of large 
signals, and so on.
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Definition 6
Signal pattern theme:   Ψ =  {  T, E, M, F }    .   Ω =  {  SOP, SOR, SIV }    , where  SOP, SOR, SIV , 

respectively, represent the signal appearance time period data, signal appearance range data, signal 
strength change data and other calculated metrics, including time domain\frequency domain signal 
strength, time domain\frequency domain frequency occupancy, the number of times the signal 
appeared, the spectral bandwidth, the signal interference rate, the airspace coverage rate, and so on.

Definition 7
RF trajectory theme:   Ψ =  {  T, E, M, F }    .   Ω =  {  MSF, IQ, RFSC, SML, SGT, SIR }    , where  

MSF, IQ, RFSC, SML, SGT, SIR  denote the indicators calculated by monitoring signal frequency data, 
IQ data, RF signal characteristics data, signal movement and positioning data, signal generation time 
data, and signal influence range data, respectively, including signal frequency and strength, signal 
movement direction, signal speed, path length, propagation time, path signal strength change, signal 
strength in the coverage area, and interference level.

Definition 8
Radiation variation theme:   Ψ =  {  T, E, M, Y }    .   Ω =  {  RVS, RVA }    , where  RVS, RVA  denote the 

metrics calculated for radiation law change statistics, radiation law change analysis data, including: 
daytime\nighttime occupancy, frequent signal identification, granularity occupancy, and number of 
signal occurrences, respectively.

Definition 9
Anomalous impact theme:   Ψ =  {  T, E, M, Y }    .   Ω= {  AEM, AS, TAA }    , where  AEM, AS, TAA  

denote anomalous electromagnetic environment data, anomalous signal data, and threat alarm analysis 
result data indicators, including prediction time, signal type, prediction probability, historical field 
strength, alarm identification, leakage signal identification, reference signal characteristics, and 
comparison signal characteristics, respectively.

ELECTROMAGNETIC ENVIRONMENT DATA WAREHOUSE ARCHITECTURE

Data Warehouse Architecture
This section presents the architecture of the big data-based electromagnetic environment data 

warehouse, which is organized into four layers. The data sources layer collects various types of 
electromagnetic environment data; the data collection layer is responsible for data extraction, cleaning, 
and standardization; the data warehouse layer integrates and organizes data into different levels for 
further analysis; and the data application layer provides services for data analysis and visualization. 
Each layer plays a crucial role in ensuring the effective storage, processing, and utilization of 
the electromagnetic environment data. Figure 3 illustrates the architecture of a big data-based 
electromagnetic environment data warehouse.
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Figure 3. Architecture of electromagnetic environment data warehouse based on big data

Note. OLAP = online analytical processing; OLTP = online transaction processing; RF = radio 
frequency; hdfs = Hadoop distributed file system.

Data Source
The data warehouse processes various types of electromagnetic environment data, such as 

spectrum monitoring data, frequency usage station data, and frequency usage equipment data. Based 
on the data acquisition time and method, these data sources can be categorized into batch historical 
data and real-time data.

Data Collection Layer
Bulk historical data needs to be loaded into the data warehouse through extraction, cleaning, and 

standardization, and real-time data is loaded into the data warehouse by data sources, such as sensing 
devices and business libraries, in the form of message subscription and data standardization processing.

Data Warehouse Layer
Massive and multi-source data must be integrated and computed to be effectively utilized for 

mining, thereby unleashing the potential value of the data to empower electromagnetic environment 
application requirements. In the face of the multi-source heterogeneity and computational complexity 
of electromagnetic environment data, the existing layered architecture of data warehouses is followed. 
The electromagnetic environment data warehouse is designed to include an operational data store 
(ODS), a data warehouse detail, a data warehouse summary, and a data warehouse application. 
The transformation of electromagnetic environment data assets into electromagnetic environment 
information assets is achieved through the processing between different layers of the data warehouse. 
The data processed in the ODS is essentially the same as that handled in the data acquisition layer, 
with the aim of preserving the original data and decoupling data sources. The detail data layer stores 
the standardized and processed electromagnetic environment data at the smallest granularity, providing 
unified, standardized, and clean data for subsequent processing. The summary data layer organizes 
data by subject, constructing multidimensional model data according to business requirements for 
data integration, splitting, and summarization within related subject areas. The application data layer 
constructs multidimensional model data based on business needs, and the resultant data is directly 
used for analysis and presentation.
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Data Application Layer
Based on the well-integrated data from the data warehouse, secondary processing is carried out, 

providing various data services externally through interfaces, including OLAP, online transaction 
processing, data mining, and data visualization.

Data Sources
Among the data aggregated in the electromagnetic environment data warehouse, bulk historical 

data come from existing operational databases and offline electromagnetic environment data files, 
and real-time data mainly come from electromagnetic environment sensing equipment that performs 
sensing tasks. Among them, there exist operational databases, such as a radio station database, 
frequency-using equipment database, frequency-using station database, or monitoring system 
database; offline electromagnetic environment data files, such as short-wave detection data files, 
short-wave or ultra-short-wave band monitoring data files, or signal direction measurement data 
files; electromagnetic environment sensing equipment, such as spectrum monitoring equipment, 
detection equipment, and direction measurement equipment. Electromagnetic environment data 
follow different formats or protocol standards, formats, such as XML, CSV, JSON, txt; and protocols, 
such as real-time messaging protocol specification device protocols, R&S vendor device protocols, 
Thales device protocols, and so on.

Data Acquisition Process
This section outlines the data collection process for the electromagnetic environment data 

warehouse, focusing on data extraction, cleaning, and standardization. The process is illustrated in 
Figure 4, and it includes methods for handling both batch historical data and real-time data. The 
extraction phase utilizes various tools and techniques depending on the data type, followed by cleaning 
procedures that ensure data accuracy and consistency. Finally, the standardized data is processed and 
loaded into the data warehouse for further use. The data collection process is illustrated in Figure 4, 
where the main tasks involve data extraction, cleaning, and standardization.
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Figure 4. Data acquisition process

Note. DB = database; XML = extensible markup language; CSV = comma-separated values; JPG 
= joint photographic group; RMTP = real-time messaging protocol; R&S = Rohde & Schwarz; ftp 
= file transfer protocol; MQ = message queuing; HDFS = Hadoop distributed file system.

First, data is extracted from the data sources. Given the diversity of sources for the electromagnetic 
environment data warehouse, different methods are employed for data extraction based on the data 
type. For batch historical data, extraction tools, such as Sqoop, Kettle, and FTP, are utilized. When 
loading data into the warehouse, incremental extraction methods are used for data sourced from 
existing operational databases, while full extraction is applied to offline electromagnetic environment 
data files. For real-time data, message subscription methods are employed, utilizing platforms, such 
as Rabbit message queuing (MQ), Redis, and Kafka. Simultaneously, during the data extraction 
process, specified data collection dates, geographic information, and frequency domain information 
are appended to the extracted data to facilitate unified management. Next, the extracted data undergoes 
a cleaning process. The data loaded into the ODS is cleaned according to established rules, covering 
three types of checks: data format, data consistency, and the rationality of business logic. Data 
format checks primarily address errors, missing data, out-of-range values, or illegal data formats. 
Data consistency focuses on resolving primary and foreign key reference conflicts and handling 
data redundancy. The rationality of business logic ensures that the data complies with relevant rules 
pertaining to the business context. Finally, the cleaned data undergoes a standardization process. This 
involves converting data of various formats and protocols into a unified standard, which includes 
standardized naming, formatting, value assignments, and the removal of duplicate data. Ultimately, 
the standardized data is loaded into the data warehouse.
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DESIGN OF ELECTROMAGNETIC ENVIRONMENT DATA 
WAREHOUSE STORAGE BASED ON BIG DATA

Relational database has several advantages, such as the relational model being easy to understand, 
user-friendly, easy to maintain, and having a low probability of data redundancy and inconsistency. 
However, due to the diverse types of electromagnetic environment data and the large volume of data, 
using relational databases can lead to excessive database load. In contrast, non-relational databases, 
like the Hadoop distributed file system and HBase, offer advantages, such as diverse data storage 
formats, ease of scalability, and high-performance concurrent read and write capabilities, making 
them suitable for the efficient storage of long-term, multi-granularity, and diverse types of data in 
electromagnetic environment data warehouses. Therefore, combining the strengths of both database 
types, the storage design for the electromagnetic environment data warehouse is as follows.

Operation data layer: Since the raw sensing data are mainly binary files, combined with the 
electromagnetic environment sensing task execution cycle, the file size is generally more than 100 
MB, so the Hadoop distributed file system is used to store the raw data extracted from the data source.

Detailed data layer: The standardized data stored in this layer contains structured, semi-structured 
and unstructured data, MySQL is used to store structured data, and HBase is used to store 
semi-structured and unstructured data; MySQL stores structured electromagnetic environment 
data, such as frequency station data and frequency division data; HBase stores semi-structured and 
unstructured data at second-level granularity; semi-structured HBase stores semi-structured and 
unstructured data at second-level granularity, semi-structured data, such as spectral field strength 
data, signal measurement parameter data, direction finding and localization data, and IQ data, and 
unstructured data, such as raw sensory data, sound, binary files, and spectral snapshot images.

Aggregate data layer: According to business requirements, this layer can be manually/timed to 
detail data layer data processing into a variety of data granularity of data, and these data in accordance 
with business needs use Hive database for storage.

Application data layer: MySQL is primarily utilized to store statistical summary result data 
related to the electromagnetic environment, including station information, signal recognition results, 
automated analysis results, target recognition results, and threat alert analysis results. In contrast, 
Hive is used to store vast amounts of supporting data, including electromagnetic background noise, 
signal parameter information, target parameter information, and threat alert information.

Construction of the Thematic Model for the 
Electromagnetic Environment Data Warehouse

Each theme is associated with a fact table and dimension tables. The dimension table stores the 
associated attributes of the objects in the fact table, while the fact table mainly stores electromagnetic 
environment data. The relationships between the dimension tables and fact tables can be categorized 
as “star,” “snowflake,” or “hybrid” models. For the dimension table data, dimension changes are 
captured based on the primary key. If changes occur, a slowly changing dimension process is applied 
to extract the changed data into the data warehouse; if there are no changes, the process ends. For 
the fact table data, field changes are captured based on the primary key. If there are changes to the 
fields, the corresponding changed data is extracted into the data warehouse. If there are no changes, 
the newly added data is extracted into the data warehouse.

When designing dimension tables and fact tables, the index design for cross-database access is 
conducted in conjunction with business requirements. The dimension tables at the detail data layer are 
designed based on time domain, frequency domain, and spatial domain information. The fact tables 
are designed with primary and foreign keys based on the information from the dimension tables. 
The summary data layer extracts and integrates data according to themes, creating indexes and data 
storage at different granularities, which can be linked to the detail data layer through indexes in the 
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tables. The application data layer can associate data from the summary data layer's themes based on 
tasks, devices, and time.

Taking the spectrum resource occupancy analysis under the theme of signal patterns as an example, 
the spectrum resource occupancy analysis primarily implements the analysis of the occurrence 
patterns of electromagnetic signals in the area of interest within a specified time range. Based on 
this requirement, the data relationships for spectrum resource occupancy analysis are designed using 
dimension tables and fact tables in a star schema model. Based on data granularity, the designed fact 
tables include the electromagnetic signal occupancy table at the second level, the electromagnetic 
signal occupancy table at the minute level, the electromagnetic signal occupancy table at the half-hour 
level, the electromagnetic signal occupancy table at the daily level, and the electromagnetic signal 
occupancy table at the monthly level. The dimension tables include attribute fields that describe the 
data in the fact tables, including time dimension, station dimension, and frequency dimension. The 
star schema relationship between the fact tables and dimension tables for spectrum resource occupancy 
analysis is shown in Figure 5.

Figure 5. Star thematic model for spectrum resource occupancy analysis

MULTIDIMENSIONAL ANALYSIS OF ELECTROMAGNETIC 
ENVIRONMENTAL DATA

Electromagnetic environment data mainly includes time-domain, frequency-domain, and 
spatial-domain information. Based on sorting and establishing correlations from the data perspective, 
various themes and models were designed. To better meet business needs, the original data needs to 
be analyzed from different dimensions to produce mining results. Different multidimensional analysis 
methods were designed, considering the characteristics of the themes and data attributes.

Multimodal Intelligent Frequency Allocation
By utilizing long-term past perception data and real-time perception data, the frequency 

usage within the coverage area is surveyed to identify available frequencies that can be allocated. 
In scenarios where no available frequencies are found, frequencies with minimal interference 
and weak environmental impact can be chosen. This mainly includes analysis of future available 
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frequencies, analysis of already used frequencies in the region, and the historical field strength changes 
of each frequency. Based on the designated equipment, time period, frequency band, occupancy 
threshold, and field strength threshold, the signal occupancy, signal appearance frequency, and 
recommended vacant frequency bands are calculated. As shown in Figure 6, between April 2, 2018, 
and June 4, 2018, the frequency occupancy and signal occurrence times within the 350–470 MHz 
frequency band are calculated, the space-time list is calculated, and the intermodulation interference 
diagram is drawn to obtain the available frequency band.

Figure 6. Available frequency analysis interface

Analysis of Electromagnetic Signal Composition
Real-Time Signal Composition Analysis

For real-time tasks, combined with the signal feature database, the signal results and summary 
analysis of each equipment are carried out, identifying the signal types, quantities, etc. It supports 
analysis of the signal composition results for all or individual equipment in real-time tasks.

Historical Signal Composition Analysis
Based on massive historical data, combined with the signal feature database, the signal results 

and summary analysis of each equipment are conducted. For the monitoring equipment, next is to 
analyze all tasks within the specified past time period to obtain the historical signal composition results.

Regional Signal Composition Analysis
The main tasks include analyzing signal categories within a specified region, frequency band 

distribution, time-domain signal distribution, and the correlation between signals and equipment. By 
using frequency band monitoring data over a certain period, the system analyzes signal categories, 
associated frequency bands, the number of signal occurrences, the frequency and count of signal 
appearances, the number of signals within different frequency bands, and the relationship between 
signals and equipment.
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During the queried time period, the number of new signal occurrences was 582, while the 
occurrences of other types of signals (known signals, unidentified signals, legal signals, illegal signals, 
etc.) were 0. The number of very high frequency signal occurrences was 245, and the number of distinct 
very high frequency signals was 336. The signal category analysis interface is shown in Figure 7.

Figure 7. Signal category analysis interface

Analysis of Electromagnetic Signal Composition
Large Signal Statistics

Next is to analyze radiation source signals with large amplitudes and their impact on the 
surrounding electromagnetic environment. According to the designated time period, frequency band, 
threshold, and time granularity (minute, half-hour, day, month), calculate the occurrence of signals 
and the signal appearance within individual time granularity. For example, the start time is set to 
October 8, 2019, at 13:57:07, and the end time is set to October 15, 2019, at 13:57:07. The frequency 
range is specified with a start frequency of 80 MHz and an end frequency of 108 MHz, while the 
threshold value is set to 0. The time granularity is configured to half an hour, and the results are 
presented in Figure 8.



16

International Journal of Data Warehousing and Mining
Volume 21 • Issue 1 • January-December 2025

Figure 8. Large signal detail interface

Figure 9 presents the detailed information of significant signals. Within the queried time period, 
the number of signal occurrences in the frequency bands 94 MHz, 92 MHz, 82.95 MHz, 82.975 MHz, 
83 MHz, and 83.025 MHz are 233,936, 233,535, 58,418, 58,470, 58,412, and 58,428, respectively.

Figure 9. Large signal statistical interface

Signal Occupancy Statistics
By analyzing the signal occupancy in the time domain, the effective activity patterns of the signals 

can be derived. According to the designated equipment, time period, frequency band, threshold, and 
time granularity (minute, half-hour, day, month), the frequency band and time occupancy of each 
signal are calculated. By setting a threshold, signals that do not meet the criteria can be filtered or 
their occupancy reduced.

Figure 10 shows the occupancy changes of receivers HRS11B#2_BJ-386.325MHz and 
HRS11B#2_WS-386.325MHz. In the upper chart, the receiver HRS11B#2_BJ-386.325MHz 
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shows that the signal occupancy rate exceeded 70% on April 11, 2018, and then dropped sharply, 
reaching 2.728962% on April 13, 2018, nearly 0%. Starting from April 14, the signal occupancy rate 
rapidly increased, reaching nearly 100% on April 15, and remained at 100% on April 17 with minor 
fluctuations. In the lower chart, the receiver HRS11B#2_WS-386.325MHz shows that the signal 
occupancy rate was 100% on April 11, 2018, then dropped to 5.86468% on April 13. On April 14 
and 15, the occupancy rate remained at 100%, and from April 16 to April 19, it remained relatively 
stable. On April 20, the occupancy rate decreased slightly, falling below 80%.

Figure 10. Signal occupancy interface

Signal Strength Analysis
Next is to perform various signal strength analyses on multiple monitoring task data at hourly, 

daily, freely defined daily time intervals, and monthly intervals. Using frequency as the x-axis and 
occupancy and field strength as the y-axes, the analysis captures the signal strength variations over 
specific time periods (continuous time, hours, days, freely defined daily periods, and months) within 
the channel, resulting in statistics, such as the median, maximum, and minimum field strength.

Figure 11 shows the variation of signal strength at different frequencies. The chart displays several 
distinct spikes at specific frequency locations (such as 89.3 MHz, 92.2 MHz, 94 MHz, 102.4 MHz, 
etc.). Apart from these spikes, the rest of the curve is relatively flat, representing background noise 
or other weaker signals. The frequency bands where the spikes occur are occupied by strong signals, 
while no significant strong signals are present at other frequencies, reflecting an uneven utilization 
of the frequency bands.
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Figure 11. Continuous time graphical display

Signal Strength Comparison
As shown in Figure 12, the frequency occupancy of different monitoring tasks or monitoring 

stations in the same time period and the frequency occupancy of monitoring tasks and monitoring 
stations across time periods are compared. The left side shows the signal strength spectrum and the 
right side displays the maximum field strength comparison, used to analyze the signal strength of 
different task numbers within specific frequency ranges. In the signal strength spectrum, the red signal 
(task number 060002580) has the lowest strength, almost close to the background noise. The yellow 
signal (task number 060002795) exhibits the largest variation and has peaks in multiple frequency 
bands, especially around 94 MHz, where the signal strength reaches its maximum. The blue signal 
(task number 060002600) and the green signal (060002598) are generally more stable, with signal 
strength fluctuating around 40. In the maximum field strength comparison chart, the maximum 
field strength results are consistent with the trends observed in the left spectrum. The green and blue 
signals are relatively stable and have higher strength, while the yellow and red signals have weaker 
field strengths.

Figure 12. Data interface for signal strength comparison
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CONCLUSION

This paper addresses the challenges of managing and analyzing large-scale electromagnetic 
environment data by proposing a comprehensive framework for an electromagnetic environment data 
warehouse. A thematic structure is constructed by designing the subject areas and dimensions of the 
electromagnetic environment, providing a theoretical foundation for multidimensional data analysis. 
A data warehouse architecture that integrates relational and non-relational databases is proposed. 
The architecture systematically incorporates data sources, extraction, cleansing, and standardization 
processes, ensuring fast data storage and efficient processing capabilities. Leveraging big data 
storage technologies, a flexible and efficient storage structure is designed to address the challenges 
posed by the large volume and diverse types of electromagnetic environment data, overcoming the 
limitations of traditional databases under high-load and heterogeneous data scenarios. By utilizing 
the OLAP capabilities of the data warehouse, a multidimensional analysis of electromagnetic signal 
data is conducted, demonstrating the practical effectiveness of the proposed framework in supporting 
large-scale data storage and analysis.

In future work, we aim to explore how artificial intelligence (AI) technologies can further 
enhance the data preparation and management process within the proposed framework. This includes 
investigating automated methods for data acquisition and ingestion from heterogeneous sources, where 
AI can optimize extraction and filtering processes. We will also examine the use of AI techniques 
for intelligent data cleansing, anomaly detection, and standardization to ensure data quality and 
consistency. Furthermore, we aim to study AI-driven approaches to streamline schema mapping 
and the integration of diverse data structures, enabling more effective thematic model construction. 
Lastly, leveraging AI for advanced analytics, including predictive modeling, pattern recognition, and 
knowledge discovery, will be a key focus to maximize the value of the electromagnetic environment 
data warehouse and meet the growing demands of big data in this domain.
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