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ABSTRACT

Communication traffic prediction is of great guiding significance for communication planning 
management and improvement of communication service quality. However, due to the complex 
spatiotemporal correlation and uncertainty caused by the spatial topology and dynamic time 
characteristics of mobile communication networks, traffic prediction is facing enormous challenges. 
We propose a mobile traffic prediction method using dynamic spatiotemporal synchronous graph 
convolutional network (DSSGCN). DSSGCN has designed multiple components, which can effectively 
capture the heterogeneity in the local space-time map. More specifically, the network not only models 
the dynamic characteristics of nodes in the spatiotemporal graph of network traffic, but also captures 
the dynamic spatiotemporal characteristics of the edges of mobile service data with different time 
stamps. The outputs of these two components are fused by collaborative convolution to obtain the 
prediction results. Experiments on two ground truth mobile traffic datasets show that our DSSGCN 
model has good prediction performance.
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INTRODUCTION

With the rapid changes in population mobility, wireless communication systems have become 
increasingly complex, leading to many communication problems like network lag. Therefore, the 
development of advanced intelligent communication systems has become an urgent need. To achieve 
intelligent network management, the mobile communication traffic prediction has attracted widespread 
attention as a fundamental research problem in the spatiotemporal data mining of communication 
networks.

The main challenge in predicting mobile network traffic lies in effectively modeling the dynamic 
spatiotemporal features of communication traffic data.

For several decades, prediction methods have evolved from traditional statistical methods 
to modern deep learning techniques, promoting accuracy and broadening the application of data 
prediction across various fields. The autoregressive integrated moving average method, widely adopted 
for time dimension forecasting, captures autocorrelation in sequences (Box et al., 1976). Support 
vector machines identify the best separating hyperplane in high-dimensional space for classification 
and regression tasks, demonstrating good generalization ability (Cortes & Vapnik, 1995). Random 
forest constructs multiple decision trees and integrates their prediction results, making it widely used 
in classification and regression tasks. The long short-term memory network (LSTM) improves the 
recursive neural network, succeeding in catching long-term dependencies and performing well in 
time dimension prediction (Breiman, 2001; Hochreiter & Schmidhuber, 1997). The gated recurrent 
unit (GRU), which mirrors LSTM, offers a simpler structure and higher computational efficiency 
(Cho et al., 2014). The graph convolutional network (GCN) applies convolutional operations to 
graph-structured data, capturing spatial relationships between nodes (Kipf & Welling, 2017), which 
is significant in traffic flow prediction and social network analysis. Transformer processes sequence 
data through a self-attention mechanism (SAM), excelling at tasks that need to capture long-term 
dependencies in time dimension prediction (Vaswani et al., 2017). The time fusion transformer 
combines the SAM and sequence modeling, focusing on multi-view time dimension prediction. Hybrid 
models, with combine traditional statistical techniques with machine-learning algorithms, such as 
combining autoregressive integrated moving average with neural networks, have been developed to 
improve prediction accuracy (Lim et al., 2021; Zhang et al., 1998). However, such sequence learning 
models have significant shortcomings in high computational training.

In the past decade, graph neural networks (GNNs) have made remarkable achievements in handling 
graph-structured datasets, especially in the field of spatiotemporal prediction. Notable methods, such 
as spatiotemporal GCN (STGCN), Graph WaveNet, and dynamic graph convolutional neural network 
(CNN), have gained particular prominence (Wu et al., 2019; Yu et al., 2018; Zhang et al., 2019).

STGCN captures spatiotemporal correlation by extending convolution operations to graph 
structured data. These methods combine GCN and unidimensional CNN to process time dimension 
data and handle traffic flow prediction, achieving high prediction accuracy. Graph WaveNet, a 
graph-based deep learning model, captures long-range dependencies in graph data. It combines 
extended causal convolutions and graph convolutions to model long-term dependencies without 
increasing computational complexity. In addition, Graph WaveNet dynamically learns graph structures 
through adaptive graph convolution, improving its adaptability and generalization ability.

Dynamic GCN (DGCN) focuses on the processing of dynamic graph data, allowing it to handle 
graph structures that change over time. This method constructs dynamic graphs and applies graph 
convolution operations, capturing the temporal relationships between nodes, making it widely used 
in traffic flow prediction. Other methods, such as temporal GCN, combines GCN and GRU to catch 
spatiotemporal dependencies. Attention-based spatiotemporal GCN incorporates attention mechanisms 
to enhance the model’s ability to capture important spatiotemporal features (Guo et al., 2019; Zhao 
et al., 2019).
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These prediction methods and models continue to innovate and optimize within their respective 
application fields, promoting the forefront development of prediction technology.

In recent years, hybrid models combining GNNs and deep sequence models have made significant 
progress, particularly in wireless communication prediction. The attention-based hierarchical graph 
spatiotemporal model highlights the superiority of using hybrid graph-sequence models for temporal 
data prediction, especially by combining GNN with sequence models (Behrouz et al., 2024). The 
data-driven intelligent control for wireless communication network explores the latest application 
of data-driven intelligent control to optimize wireless communication networks using big data and 
artificial intelligence (Huo et al., 2024). Joint statistical modeling and machine learning focuses on 
achieving efficient traffic prediction in network management through joint statistical modeling and 
machine learning methods (Lo Schiavo et al., 2022).

These studies demonstrate the feasibility and effectiveness of combining GNNs and sequence 
models for traffic prediction. They also provide background support for selecting the technical path 
and framework design for communication traffic prediction in this study, offering important inspiration 
and a theoretical basis for the multi-model fusion strategy proposed here.

Although GCN performs well in mobile communication network traffic prediction, there are 
still shortcomings. GCN captures node features in static graph structures; however, it struggles to 
capture dynamic changes over time. As a result of the high dynamism and temporal variability of 
mobile communication network traffic datasets, GCN cannot effectively capture the dynamic features 
that change over time, reducing forecast accuracy. Additionally, as the network size grows, the 
computational complexity of GCN significantly increases, leading to higher demands on computing 
resources and time consumption. This poses challenges for real-time traffic prediction in large-scale 
mobile communication networks.

Traditional GCN focuses on the local neighborhood information of nodes, ignoring the 
dependency relationships between distant nodes. However, in mobile communication networks, the 
traffic dependency relationship between long-distance base stations is equally important. This local 
structural limitation can negatively affect prediction performance. Furthermore, mobile communication 
networks may suffer from sparsity issues, where data is lacking in certain time periods or in specific 
regions. GCN performs poorly in handling sparse data, which can lead to inaccurate predictions.

To settle these issues, a dynamic spatiotemporal synchronous GCN (DSSGCN) for mobile 
communication network flow forecasting has been proposed. Figure 1 shows that the core concept 
of DSSGCN is the use of DGCN to introduce the time dimension, capture dynamic change features, 
and combine it with SAM, which strengthens the ability of the model to catch long-term correlations. 
Weighted boundary nodes are used to improve the model’s ability to handle sparse data, while 
a spatiotemporal synchronous graph convolution module (SGCM) was constructed to capture 
complex spatiotemporal correlations within local spatiotemporal graphs. By aggregating long-range 
spatiotemporal correlations and heterogeneity, the mobile communication network traffic prediction 
can be achieved. Compared with current GCN-based methods, this model achieves significant 
improvements, as validated in the prediction experiments in the following sections.
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Figure 1. Main components of dynamic spatiotemporal synchronous graph convolutional network

Note. SGCM = synchronous graph convolution module; DGCN = dynamic graph convolutional 
network.

The main contributions of this article are as follows:

• A new traffic prediction framework based on DGCN for mobile communication networks is 
proposed. This is characterized by synchronously capturing local spatiotemporal correlations 
rather than using different types of independent neural network modules.

• The proposed DSSGCN constructs a spatiotemporal SGCM to capture correlations and 
heterogeneity in long-range spatiotemporal graphs. Deploying this module in each period of 
long-range spatiotemporal communication reveals the potential spatiotemporal correlations of 
more complex dynamic network communication systems.

Additionally, the adaptive GCN approach models dynamic data flows, which is crucial for 
managing and optimizing data in modern data warehouses. This method enhances the ability to capture 
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complex relationships within data, such as spatial and temporal dependencies. This is essential for 
improving the efficiency and accuracy of data mining processes.

Furthermore, the approach facilitates more effective data storage, retrieval, and processing in 
data warehousing. By leveraging dynamic graph structures, this study enables the system to handle 
evolving data streams, making it well-suited for real-time analytics and predictive modeling, where 
the ability to manage and analyze massive, constantly changing datasets is paramount.

RELATED WORK

Traditional CNNs perform well in handling grid-like data. However, there are limitations when 
dealing with non-Euclidean structured graph data. In response to these shortcomings, researchers 
have proposed various improvement methods, including the introduction of SAM (see Figure 2), 
the use of extended convolutional techniques, and the construction of dynamic graph models. 
These improvement methods enhance the functionality of the models, improving the feasibility and 
effectiveness of practical applications.

Figure 2. Self-attention mechanism calculation process

Convolutional-Based Methods
The following are convolutional-based spatiotemporal network modeling methods:

• GCN: The semi-supervised GCN model captures local spatial dependencies between nodes by 
applying convolution calculations to neighboring nodes within the graph.
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• STGCN: This captures spatial correlations through GCN and temporal dependencies through 
unidimensional CNN, addressing the shortcomings of static GCN in processing time-varying data.

• Graph WaveNet: This model captures long-distance dependencies without significantly 
increasing computational complexity. It also enhances the processing ability of dynamic 
spatiotemporal data by dynamically learning graph structures.

• DGCN: This captures dynamic relationships between nodes through dynamic graph construction 
and graph convolution operations. It is widely used in social network analysis and traffic flow 
prediction, demonstrating strong predictive capabilities.

• SAM: This method is introduced into graph convolutional models to improve the ability to extract 
long-term correlations. It significantly enhances the capacity to capture important spatiotemporal 
features.

Problem Formulation
Wireless network traffic is highly dynamic, influenced by factors like changes in network nodes, 

fluctuations in user behaviors, and environmental interferences. Due to the complexity and variability 
of these factors, accurately predicting future traffic patterns is a challenging problem. This study 
aims to use historical traffic data to predict network traffic for a certain time. This prediction is 
crucial for resource allocation, traffic scheduling, and network performance optimization. Accurate 
traffic forecasting helps to reduce congestion, ensure quality of service, and optimize bandwidth and 
computational resource distribution.

Traffic data in wireless networks typically exhibits strong spatiotemporal dependencies, where 
traffic changes over time and is influenced by interactions between network nodes. The dynamic 
nature of these networks poses challenges for traditional forecasting methods, making it difficult to 
capture these complex dependencies and leading to inaccurate predictions. This study defines the 
problem as predicting the communication traffic of wireless network nodes for a future time based 
on historical traffic data, while accounting for both spatial and temporal characteristics. To solve this 
problem, the study aims to develop a model capable of dynamically capturing these spatiotemporal 
dependencies and accurately predicting future traffic trends.

GCN exhibit excellent performance in handling non-Euclidean structured data. The following 
are specific steps and key formulas involved in the preparation of graph convolution.

Improving Set Response Rates
Each base station or network unit in a mobile communication network is defined as a node. The 

connection correlation is defined as edges. The weights of edges are defined based on geographic 
distance or communication strength. The node connectivity is denoted by constructing an adjacent 
matrix, where each element represents an edge weight:

  𝒜  ij   =  { 
 𝓌  ij   Node i and j have connection correlation 

    
 0 Other situations 

     (1)

where  𝒜  denotes the correlation of all node connections,   𝒜  ij    indicates the edge weight of node 
i and j, and   𝓌  ij    is a weight based on geographic distance or communication strength.

Graph Signal and Convolution
The characteristics of each base station node include historical traffic data, temporal characteristics, 

spatial characteristics, and more. They form the node feature matrix  𝒳 ∈  ℝ   N×F  , where  N  denotes 
node amount and  F  denotes characteristic dimension. The characteristics of edges convolution include 
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physical distance between base stations, communication strength, and more. The edge feature matrix is 
denoted as  ℰ ∈  ℝ   M× F  e    , where  ℳ  denotes edge amount and   F  e    denotes edge characteristic dimension.

Graph convolution operations use edge features to weight the adjacent matrix and improve the 
information propagation process:

   ℋ    (  l+1 )    = σ (     ̃  ℛ    −1/2  ̃  𝒜  (  ℰ )     ̃  ℛ    1/2   ℋ   l   𝒲   l  )     (2)

in which   ̃  𝒜  = 𝒜 + I  denotes weighted adjacent matrix obtained by adding a unit matrix and 
combining it with edge features matrix  ℰ ,   ̃  ℛ   denotes degree matrix,    ̃  ℛ   ii   =  ∑ j     ̃  𝒜   ij    ,   ℋ   l   and   𝒲   l   
denotes  l‐th  layer’s node feature matrix and weight matrix, respectively, and  σ  denotes activation 
function (such as  ReLU ).

In spatiotemporal convolutional networks (such as STGCN), combining graph convolution and 
time convolution to capture spatiotemporal correlations:

   ℋ    (  t+1 )    = GCN (    𝒳   t  )  *  f  t     (3)

where  *  represents convolution operations in temporal dimension and   f  t    denotes time convolution 
kernel.

Attention Mechanism and Loss Function
In attention-based GNNs (Velickovic et al., 2018), edge features can be used to calculate attention 

weights between nodes:

   ℯ  ij   = LeakyReLU (    𝒶   T  [  𝒲  𝒽  i   ∥ 𝒲  𝒽  j   ∥  ℰ  ij   ]   )     (4)

in which  𝒶  denotes attention weight vector,   𝒽  i    and   𝒽  j    are the features of nodes i and j, and   ℰ  ij    
denotes feature of edges i~j.

In terms of model training and validation, this study chooses the mean absolute error (MAE) 
(Willmott & Matsuura, 2005) as the loss function:

 ℒ =   1 _ N    ∑ 
i=1

  
N

   |    𝒴  i   −   ̂  𝒴   i   |     (5)

in which  N  is sample size,   𝒴  i    is  i‐th  specimen actual data,    ̂  𝒴   i    is  i‐th  specimen prediction data, 
and    |    𝒴  i   −   ̂  𝒴   i   |     denotes the absolute error between  i‐th  specimen prediction data and actual data.

DSSGCN PREDICTIVE MODEL

Figure 3 illustrates the study’s proposed DSSGCN framework. First, the entry cellular 
communication network flow is handled by a modified linearity module. Then, it is fed into a 
superposed spatiotemporal module (STM), which extracts complex spatiotemporal features from 
the input features. The STM performs feature fusion and aggregation through a gating mechanism, 
attention mechanism, and multi-level dynamic graph convolution. Finally, the extracted features are 
mapped to the prediction results through multiple output layers.
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Figure 3. Dynamic spatiotemporal synchronous GCN (DSSGCN) architecture for mobile communication traffic forecasting

Note. ReLU = rectified linear unit; SGCM = synchronous graph convolution module; DGCN = 
dynamic graph convolutional network.

Construct Adjacent Matrix
The model constructs an adjacent matrix through adaptive adjacent matrix and spatial attention 

mechanism, as shown in Formula 1, to dynamically adjust the weights between nodes and capture 
complex spatiotemporal relationships (Li et al., 2018). The initialized node vector and boundary vector 
adaptive parameters are used to adaptively generate the adjacent matrix. In the forward propagation 
process, the weights between nodes are dynamically adjusted by calculating the self-adaption adjacent 
matrix. Specifically, the matrix is generated through the product of node vectors and activation 
functions. The calculation process is as follows:

 ℋ =  ℋ  1    ∙ ℋ  2    (6)

  ℛ = ReLU (  ℋ )   = max (  0, ℋ )     (7)

  𝒜  ij   =   
exp (    ℛ  ij   )  

 ___________ 
 ∑ k=1  

N   exp (    ℛ  ik   )   
    (8)
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In Formula 6, the node vector matrix   ℋ  1    has a dimension of    (  N, d )    , and is the embedding vector 
for each node. The node vector matrix   ℋ  2   , with dimensions    (  d, N )    , is a weight matrix used to calculate 
the adaptive adjacent matrix, where  d  denotes feature dimension. The result of the matrix dimension 
multiplication,  ℋ , is    (  N, N )    .

In Formula 7,  ℛ  is the matrix activated by the activation function rectified linear unit, or  ReLU . 
Formula 8 applies the  softmax  function, which transforms each row of input  ℛ  into a probability 
distribution. This process calculates the similarity between nodes, converts it into a probability 
distribution through the  softmax  function, and forms an adaptive adjacent matrix   𝒜  ij   .

In addition, the study uses spatial attention mechanism to further regulate the adjacent matrix 
(Vaswani et al., 2017; Wu et al., 2020). This mechanism, which is based on input features, calculates 
the correlation between nodes through a series of parameters. It can be formulated as follows:

 lhs =  𝒳 ∙ 𝒲  1    ∙ 𝒲  3    (9)

 rhs =  𝒳 ∙ 𝒲  2    ∙ 𝒲  4    (10)

  sum = cat [  lhs [   : , idx, :  ]  , rhs [   : , idy, :  ]   ]     (11)

  𝒮  n, c  out  ,h,w   =  ∑ 
 c  in  =0

  
 c  in  −1

   ∑ 
i=0

  
 k  h  −1

   ∑ 
j=0

  
 k  w  −1

   𝒲   c  out   ,c  in  ,i,j
   ∙     sum  n, c  in  ,h+i,w+j   +  b   c  out  

    (12)

where   𝒲  1    and   𝒲  2    are parameters used for weighting time-step features.   𝒲  2    and   𝒲  4    are 
parameters used for dimensionality reduction;  𝒳  is used as the input feature matrix. These are 
weighted and transformed by the parameter matrices during the forward propagation process. The 
feature map  sum  is concatenated by the left operand  lhs  and the right operand  rhs , while  idx  and  idy  
are indexed arrays used to select specific vertices.   𝒲   c  out   ,c  in  ,i,j

    denotes convolution kernel weight,   b   c  out  
    

denotes convolution bias,   𝒮  n, c  out  ,h,w    is the generated new adjacent matrix,  n ∈  {0,1, 2, ..., N − 1}   is 
the batch dimension index,   c  out    is the output channel dimension index, and   c  in    is the input channel 
dimension index.  h  and  w  denote the output characteristic chart’s height and width dimension indexes.  
i  and  j  are height and width dimension indexes of the convolutional kernel.

This new adjacent matrix and adaptive adjacent matrix form the final adjacent matrix  𝒜 .

STM
The constructed STM model improves prediction accuracy by capturing the temporal and 

spatial dependencies of nodes. Specifically, the first-generated adjacent matrix represents the spatial 
relationships between nodes. Spatial features are then extracted using graph convolution operations, 
while time features are captured through time convolution or recurrent neural networks. Afterwards, 
the spatiotemporal features are fused.

The SGCM module uses stacked multilayer graph convolutional to further extract spatiotemporal 
features. By using an adaptive adjacent matrix and a spatial attention mechanism, the weights 
between nodes are dynamically adjusted to capture more important spatiotemporal dependencies. 
Finally, the outputs of all convolutional layers are integrated to generate the prediction result. This 
process integrates the strengths of graph and time convolution, allowing more effective processing 
of spatiotemporal data.

Graph Convolutional Layer
In the specific implementation, there are also auxiliary modules, such as graph convolutional 

layers, linear layers, and multi-layer perceptrons. These are combined into a dynamic GCN module 
to process node and boundary features. The formulas are listed here:
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  ℋ   '  = 𝒜 ∙ ℋ  (13)

  ̂  𝒜  =   ̃  ℛ    − 1 _ 2   ̃  𝒜    ̃  ℛ    − 1 _ 2    (14)

  𝒽    (  l+1 )    = σ ( ̂  𝒜   𝒽   l   𝒲   l  +  b   l )   (15)

  ℋ   l  = σ ( 𝒲   l   ℋ    (  l−1 )    +  b   l )   (16)

where   𝒽   l   denotes the input characteristic matrix of layer  l ,   ̂  𝒜   denotes normalized adjacent matrix, 
and   b   l   is the bias vector of the  l‐th  layer.

The aggregation of node features based on the graph adjacent matrix is a core concept of graph 
convolutional layers, aiming to catch dependency relationships between nodes. This study used two 
forms of graph convolution operations within the framework.

The first form employed the Einstein summation convention, with the new node feature matrix   ℋ   '   
obtained through Formula 13. The second form transposed the adjacent matrix for feature aggregation, 
as defined in Formula 15.

The linear layer implemented standard two-dimensional convolution operations to perform 
linear transformations on node features. This layer contained a two-dimensional convolution module, 
calculated using Formula 16. Additionally, another layer used convolution kernels of different sizes 
and dilation rates to consider different contextual information during feature extraction.

Overall, these modules achieve feature aggregation and extraction of graph structured data through 
graph convolution operations, providing a foundation for subsequent feature fusion and prediction. 
These implementation ideas combine the classic concept of graph CNN, capturing the relationships 
between nodes through convolutional operations and effectively processing spatiotemporal graph data.

Time Convolutional Layer
The time convolutional layer performs convolution operations on temporal dimension data. This 

is mainly reflected in temporal dimension features extraction and aggregation (Yan et al., 2018). 
Time convolutional layers aim to process time dimension data through one-dimensional convolution 
operations, capturing temporal dependencies and dynamic patterns of change (Dai & Zhong, 2020). In 
this study, the time convolution layer is usually implemented through a two-dimensional convolution 
module, which is configured to perform convolution operations in the time dimension. The formula 
is as follows:

   ℋ  bktn   = σ (   ∑ 
d=0

  
D−1

   ∑ 
 t  k  =0

  
T−1

   𝒲  kd t  k  ,0
      𝒳  b,d,t+ t  k  ,n

   +  b  k   )     (17)

where   ℋ  bktn    is the value of the convolutional output feature map on the  b‐th  sample,  k‐th  
channel,  t‐th  time step, and  n‐th  node.   ∑ c=0  

C-1   is   the sum of the input channels,   ∑  t  k  =0  
T-1   is   the sum of the 

time dimension of the convolutional kernel,   𝒲  kd t  k  ,0
    is the weight of the  k‐th  output channel,  d‐th  

input channel,  t‐th  time step in the convolutional kernel,   𝒳  b,c,t+ t  k  ,n
    is the value of the  b‐th  sample,  c‐th  

channel,  t +  t  k    time step, and  n‐th  node in the input tensor.
Specifically, a sequence characteristic matrix comprising multiple time steps forms the input 

of time convolutional layer. By setting appropriate convolution kernel size and step size, time 
convolutional layers slide along the time dimension and perform convolution calculations on features 
at each time step.

The convolution operation involves applying convolution kernels to local windows within the 
time dimension to extract features from within that window. This process converts the original 
temporal dimension data into higher-order characteristic representations, allowing the model to better 
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capture vibrant changes and correlations in time. These higher-order feature representations are then 
passed to the graph convolutional layer and other network layers for further feature extraction and 
prediction tasks.

SGCM
The core concept of SGCM is to capture complex correlations in spatiotemporal information by 

combining graph convolution and time convolution (Zhang et al., 2020). In spatiotemporal data, spatial 
and temporal relationships are often intertwined, making it essential to consider both simultaneously 
for effective modeling.

SGC uses GCN to model node relationships in space. Graph convolution can capture spatial 
dependencies in graph structures and learn spatial feature representations of each node through 
an adjacent matrix for message passing and aggregation. Specifically, the input feature matrix is 
transformed through graph convolutional layers to generate spatial feature representations. This step 
is represented as follows:

  ℋ  s  
 (  l+1 )    = σ ( ̃  𝒜   ℋ  s  

l    𝒲  s  
l  )   (18)

where   ℋ  s  
l    and   𝒲  s  

l    denote  l‐th  layer’s node characteristic matrix and weight matrix, respectively.
Temporal convolution utilizes one-dimensional convolution to extract temporal features. It 

captures dynamic changes within the time dimension and models time dependencies by performing 
convolution operations on the time dimension. Specifically, spatial feature representations are 
transformed through temporal convolutional layers to generate spatiotemporal feature representations. 
This step can be represented as follows:

  ℋ  t  
 (  l+1 )    = σ ( 𝒲  t   *  ℋ  t  

l  +  b  t  )   (19)

where   𝒲  t    denotes the time convolutional layer weight,   ℋ  t  
l   denotes time feature matrix of the 

l-th layer, and  *  is a two-dimensional convolution according to Formula 17.
Spatiotemporal feature fusion achieves joint modeling of spatiotemporal features by alternately 

applying graph convolution and time convolution layers. Through multi-level spatiotemporal feature 
extraction, complex spatiotemporal dependencies can be captured. Specifically, the spatiotemporal 
feature representation of each layer represented as follows:

  ℋ    (l+1)   = σ ( 𝒲  ST   *  ℋ   l  +  b  ST  )   (20)

where   𝒲  ST    and   b  ST    denote spatiotemporal convolutional layer weights and bias terms, respectively.

EXPERIMENTS

To assess the function of DSSGCN, this study performs experimentation and comparisons using 
two ground-truth mobile communication flow information from the Big Data Challenge initiated by 
Telecom Italia (Barlacchi et al., 2015).

Datasets
The study evaluated DSSGCN using the Milan Regional Public Mobile Traffic Dataset released 

by Telecom Italia. The Milan region consists of 1,000 grids, each covering an area of approximately 
235x235 meters. The data was collected over two months, from November 1, 2013, to January 1, 
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2014. Communication flow was recorded every 10 minutes. To address data sparsity issues, the traffic 
sampling rate was adjusted to one-hour intervals.

According to time density, the datasets contain 207 and 400 traffic points, respectively. These 
datasets are divided into training, testing, and validation sets in a ratio of 7:2:1. The adjacent matrix 
of the node graph is constructed from the spatial dimension of the grid using a threshold Gaussian 
kernel (Shuman et al., 2013). Table 1 presents detailed statistical information on the datasets.

Table 1. Statistical figures of Milan and Milan400

Datasets # Traffic Points

Milan 207

Milan400 400

Experiment Settings
In these experiments, the study used 24-hour historical data to forecast the next hour’s 

communication flow. Specifically, the input dimension was 24, and the prediction step was 1. 
Self-adaption matrices were inserted with equidistribution arguments of size 10. All experiments 
were repeated five times. The learning rate was set to 0.001, with a learning rate decline of 0.97. The 
batch size was 8, and both the remaining and expansion channels were set to 60. The dropout rate to 
0.3, and the weight decay rate was 0.0001. The optimization models consist of three STMs, with each 
SGCM containing three graph convolution operations and 40 intermediate filters. All experiments 
were conducted using a computer equipped with an Nvidia GeForce RTX 1070 GPU.

Baseline Methods
The study contrasted its DSSGCN approach with different communication flow forecasting 

methods, including GRU, recurrent neural network, LSTM, multi-range attentive bicomponent GCN, 
dual dynamic spatiotemporal GCN; and Graph WaveNet (Chen et al., 2020; Sun et al., 2022; Sutskever 
et al., 2014; Zhou & Nelson, 2002). The study used three error metrics to compare the performance of 
each method: MAE, mean absolute percentage errors (MAPE), and root mean squared errors (RMSE).

Experiment Results
Comparison and Analysis

The study contrasted the predictive function of DSSGCN with six base-line methods at 12 
prediction levels on two datasets (see Table 2). The STSGCN consistently outperformed other 
base-line approaches on both datasets.

Table 2. Prediction results using various approaches on Milan and Milan400

Methods Dataset Milan Milan400

Metrics MAE RMSE MAPE (%) MAE RMSE MAPE (%)

RNN 0.0221 0.0307 104.4 0.0237 0.0368 123.74

LSTM* 0.0202 0.0295 68.99 0.0223 0.0353 105.15

GRU 0.0196 0.0287 65.54 0.0224 0.0355 106.85

MRA-BGCN 0.0219 0.0306 98.77 0.0239 0.0367 127.2

continued on following page
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Methods Dataset Milan Milan400

Metrics MAE RMSE MAPE (%) MAE RMSE MAPE (%)

Graph WaveNet 0.0198 0.0329 19.31 0.0245 0.0397 17.29

DDSTGCN 0.0194 0.0308 14.05 0.0222 0.0371 18.65

DSGCN (study) 0.0171 0.0271 13.73 0.0197 0.0329 18.93

DSSGCN (study) 0.0115 0.0198 8.67 0.0142 0.0271 12.76

Note. * LSTM, or long short-term memory, is a type of recurrent neural network that captures long-term dependencies in sequential data. MAE = Mean 
Absolute Error; MAPE = Mean Absolute Percentage Errors; RMSE = Root Mean Squared Errors; RNN = Recurrent Neural Network; GRU = Gated Recur-
rent Unit; MRA-BGCN = Multi-Range Attentive Bicomponent GCN; DDSTGCN = Dual Dynamic Spatial-Temporal GCN; DSGCN = Dynamic Spatiotemporal 
GCN; DSSGCN = Dynamic Spatiotemporal Synchronous GCN.

RNN, LSTM, and GRU models only consider temporal correlation and do not use the spatial 
correlations in spatiotemporal network. MRA-BGCN and Graph WaveNet utilize two modules to 
model spatial-temporal correlation, with a shared module at different times to extract long-term 
spatiotemporal correlation. However, they ignore the heterogeneity of spatiotemporal network data. 
DDSTGCN considers the dynamic hypergraph mechanism, outperforming the baseline on the Milan 
dataset. However, in the Milan400 dataset, the performance in terms of MAPE is not as good as that 
of Graph WaveNet. DSGCN optimizes the SAM and obtains better capability on the Milan dataset 
without the SGCM. Yet, on the Milan400 dataset, MAPE is slightly higher than DDSTGCN. Based 
on DSGCN, the DSSGCN combines the SGCM, considers local spatiotemporal correspondence, 
and captures spatiotemporal heterogeneity, obtaining better results than the most advanced previous 
models. This showcases the ascendancy of this study’s method in characterizing the spatiotemporal 
features of cellular network communication flow.

Visualization of Results
To visually demonstrate the test results, the study compared the average RMSE and communication 

traffic prediction results of five methods on the Milan400 dataset, as shown in Figure 4. All five 
methods forecast the communication traffic peak-valley. Contrasted with other models, the DSSGCN 
model displays better overall performance in terms of prediction.

In Figure 4(a), the DSSGCN model curve is lower than the others for most of the time, indicating 
that DSSGCN performs better than other methods. In Figure 6(b), the DSSGCN method performs better 
in traffic prediction, with the DSSGCN (red curve) closely following the ground truth communication 
traffic (black thick curve). This indicates that DSSGCN outperforms other methods in communication 
traffic prediction. Notably, in long-term prediction, DSSGCN consistently produces more accurate 
results, highlighting that the strategy based on synchronous graph convolution combined with SAM 
can better explore the dynamic spatial-temporal patterns of communication flow.

Table 2. Continued
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Figure 4. Performance of various models on Milan400 (a) average forecast results using various models on Milan400 under RMSE 
(b) forecast results of communication traffic using various models on Milan400

Note. GRU = Gated Recurrent Unit; LSTM = Long Short-Term Memory; DSGCN = Dynamic 
Spatiotemporal GCN; DSSGCN = Dynamic Spatiotemporal Synchronous GCN; RMSE = Root Mean 
Squared Errors; DDSTGCN = Dual Dynamic Spatial-Temporal GCN.

To further demonstrate the predictive performance, the study arranged the actual communication 
traffic, predicted communication traffic, prediction error, and standard deviation of prediction results 
in a square matrix. Figure 5(a) and Figure 5(b) represent the level of communication traffic with 
different colors. Darker colors indicate greater communication traffic. The figure shows the contrast 
of forecast results with the ground-truth situation, indicating that the predicted communication traffic 
is similar to the actual communication traffic.

Figure 5(c) shows that the overall prediction error values are relatively small, with most errors 
ranging from 0.001 to 0.01. This indicates that the model’s prediction results are relatively accurate 
in most cases. According to Figure 5(d), most of the standard deviations fall between 0.001 and 
0.01, indicating that the model’s predictions are relatively stable in most cases. However, some base 
stations (like columns 6 and 7) have large errors and standard deviations at multiple time steps. Thus, 
the traffic of these base stations may have significant volatility or complexity, making the method 
unable make firm predictions. Therefore, prediction results will be unstable.

It is possible to introduce more complex models or enhance the robustness of the model to address 
situations with large traffic fluctuations.
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Figure 5. Visual display of predictive performance on Milan400 (a) ground truth communication traffic (b) prediction of 
communication traffic (c) error between predicted and actual values (d) standard deviation of predicted results

Computational Complexity
Using the Milan and Milan400 datasets, the study further compared the training time and inference 

time of the DSSGCN model with other methods. Table 3 reports the experimental results.
On the Milan dataset, the DSSGCN proposed has similar training and inference time compared to 

DDSTGCN. However, on the Milan400 dataset, the training and inference of DSSGCN are longer than 
DDSTGCN, indicating that their computational complexity remains the same at low data densities.

The proposed DSSGCN method has higher computational complexity at high data densities due 
to the inclusion of layered SGCM modules. On both datasets, the training and inference times are 
slightly longer compared with LSTM and GRU, primarily because of the added self-attention module. 
However, considering the significant performance enhancement of the proposed DSSGCN method, 
the relatively high computational cost is justifiable, and the small time difference is acceptable.
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Table 3. Computational complexity on Milan and Milan400

Dataset Computation Time (Training Time (secs/epoch)/Inference Time (secs))

LSTM MRA-BGCN GRU DDSTGCN DSSGCN(ours)

Milan 6.6774/0.859 196.5487/17.6722 5.5709/0.8118 17.7491/2.1783 14.8003/1.5889

Milan400 5.5806/0.8161 66.5813/8.8921 3.0408/0.3569 9.4044/1.0977 26.3928/3.1031

Note. LSTM = Long Short-Term Memory; MRA-BGCN = Multi-Range Attentive Bicomponent GCN; GRU = Gated Recurrent Unit; DDSTGCN = Dual 
Dynamic Spatial-Temporal GCN; DSSGCN = Dynamic Spatiotemporal Synchronous GCN.

CONCLUSION

This article presents a deep learning-based DSSGCN for predicting traffic in cellular wireless 
communication networks. This model combines GCN and gated linear units to improve prediction 
accuracy by capturing spatiotemporal dependencies. The core of this model consists of a SGCM 
and multiple GCN layers. Each GCN layer captures the spatiotemporal dependencies between nodes 
through a dynamic adjacent matrix, while filtering important information through a gating mechanism. 
Additionally, the model includes several attention mechanisms that dynamically adjust the edge 
weights of the graph, enhancing its ability to learn complex spatiotemporal patterns.

This study introduces an in-depth analysis of prediction variability, focusing on standard deviation 
patterns across spatial and temporal dimensions. By exploring the variability in forecast errors, the 
study provides valuable insights for improving forecasting model stability and robustness—key for 
optimizing end-user computing applications in dynamic network environments. The findings contribute 
to refining predictive models, enabling more accurate and reliable network traffic management. 
Overall, the DSSGCN model implemented in this article provides an efficient, flexible, and accurate 
solution for traffic prediction tasks in cellular wireless communication networks.
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